In Graphics, pervasively used to represent transformations.

  • Translation, rotation, shear, scale

Matrices is array of numbers ( rows, n columns):

Matrix-Matrix Multiplication:

  • # (number of) columns in A must = # rows in B
  • Element (i, j) in the product is the dot product of row i from A and column from B ไน˜็งฏ็Ÿฉ้˜ต็š„ (i,j) ๅ…ƒ็ด ไธบ A ็Ÿฉ้˜ต็š„็ฌฌ i ่กŒๅ‘้‡ๅ’Œ B ็Ÿฉ้˜ต็š„็ฌฌ j ่กŒๅ‘้‡็‚น็งฏ็š„ๅ€ผ

Matrix-Vecotr Multiplication:

  • Treat vector as a column matrix ๆŠŠๅ‘้‡่ง†ไฝœ m ่กŒ 1 ๅˆ—็š„็Ÿฉ้˜ต

Transpose of a Matrix:

  • Switch rows and columns

Identity Matrix and Inverses: ๅ•ไฝ็Ÿฉ้˜ตๅ’Œ็Ÿฉ้˜ต็š„้€†

Vector multiplication in Matrix form:

  • Dot product
  • Cross product